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Abstract: Efficient routes to racemic Ihnofosine (1) and to the enantiomers of its oxygen analog, 2’-(trhnetbyl- 

ammonio)ethyl3-hexadecyloxy-2-methoxymethylpropanephosphatc (2). are described starting from ethyl 

a-(hydroxymethyl)acrylate (3) or 2-methylene-1,3-propanediol(6). 

2’-(Trimethylammonio)ethyl 3-hexadecylthio-2-methoxymethylpropanephosphate (BM 41.440: 

llmofosine, 1)‘. is one of the most potent antineoplastic ether-linked phosphocholines reported so far. t b This 

compound recently has been tested in clinical phase ll trails in refractory cancer patients,* and has stimulated 

interest in analogs of Ihn0f0sine.s mc-Ihuofosine (1) was synthesized by Bosies et aLt* in an eight-step 

reaction sequence starting from diethyl bis(hydroxymethy1) malonate in 21% overall yield. Here we report an 

efficient synthesis of mc-1, and the first synthesis of the chiral oxygen analog of 1.2’~(trimethyl-ammonio)ethyl 

3-hexadecyloxy-2-methoxymethylpropanephosphate (2). 4 In an extension of our studies of the influence of 

stemochcmistty at the C-2 position of autit.umor ether glycerolipids on biological a~tivity,~ we sought to prepare 

and test optically active oxygen analogs of 1. 
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Our synthesis of Ilmofosine started from ethyl a-(hydtoxymethyl)acrylate (3)6 (Scheme 1). Treatment 

of acrylate 3 with phosphorus tribromide in ethyl ether provided a-(bromomethyl). Alkyhttion of ethyl 

a-(bromomethyl)acrylate with hexadecyhnemaptan in the presence of triethylamine afforded ethyl a-@exadecyl- 

thiomethyl)acrylate (4) in 90% yield.’ Reduction of acrylate 4 with diibutylaluminum hydride (DIBAL) gave 

3-hexadecylthio-2-methylene-l-ptopanol (§) in 85% yield. Alkylthiopropenol5 was converted into 1 iu a t&e 

step sequence (55% overall yield): (1) alkylation of alkylthiopropenol5 with sodium hydride and methyl iodide 

(2) hydroboration with boranedimethyl sulfide, followed by oxidative workup with sodium perborate. and 

(3) phosphorylation with phosphorus oxychloride and coupling with choline tosylate in alcohol-free &loroform 

at -20 T. Our synthesis of Ilmofosine is shorter than the Basics et al. la method, requiring only six steps to give 
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the desired product in 37% overall yield. Moreover, application of a chit-al organoborane instead of BHs- Me,S 

would allow preparation of chiral 1 via the asymmetric hydroboration method shown below for the synthesis of 

(R)-2. 

Scheme 1. Synthesis of Bmofosine (1) 
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‘Bvo synthetic approaches to the oxygen analog of Ilmofosine (2) are described here (Scheme 2). The 

first method involved the one-pot selective monoalkylation of 2-methylene- 1,3-propanediol(6)sa via a 1,3-cyclic 

stamroxane derivatives in chloroform/methanol followed by treatment with cesium fluoride and l-bromo- 

hexadecaue in DMF to give 2-hexadecyloxymethyl-2-propenol(7) in 86% yield.10 The second method for the 

preparation of 7 involved mrchphilic attack by the copper(I) salt of a primary alcohol1 1 (hexadecanol) on ethyl 

a-(bromo-methyl)acrylate in THF to yield ethyl 2-(hexadecyloxymethyl)acrylate in 64% yield. The latter 

compound was reduced with DIBAL in THF at -78 “C to give 7 in 72% yield. 

scheme 2. Enantioselective Synthesis of the Oxygen Analog of 1 3 
ref. 6a 
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Methylation of 7 with methyl iodide and sodium hydride in THF gave 3-hexadecyloxy-2- 

methoxymethyl- 1 -propene (8) in 92% yield. 1 2 Asymmetric hydroboration of propene 8 with (-)-diisopino- 
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campheylborane [(-)-(Ipc)sBH],t 3 followed by the oxidation of the intermediate borane with hydrogen peroxide, 

yielded 3-hexadecyloxy-2-(R)-methoxymethyl- 1-propanol [(R)-91 in 94% yield. 14 ‘Ihe enantiomeric excess 

(ee) of 9 was estimated to be 84% by chiral HPIC analysis 15 of the (R)-(+)-MTPA ester derivative of (R )-9. 

Asymmetric hydroboration of pro&ml I-alkemzs with (Ipc)zBH normally provides poor enantiometic excess,t6 

but an excellent level of asymmetric induction has apparently been achieved here because of the large size 

difference17 between the hexadecyloxy and methoxy groups of 8. Finally, propanol (R)-9 was treated with 

PGC13 and excess choline tosylate in chloroform in the presence of triethylamine to give the target compound, 

(R)-2’-(trimethylammonio)ethyl 3-hexadecyloxy-2-methoxymethylpropanephosphate [(R )-2] ,I* in 70% yield. 

The (S)-enantiomer of 2 was made by the hydmboration of propene 8 with (+)-(rp~)sBH.~~ 

In conclusion, the present work describes an improved synthesis of mc-Ilmofosine (1) and an 

enantioselective synthesis of its oxygen analog 2 starting from ethyl a-(hydroxymethyl)acrylate (3) or 2- 

methylene-1,3-propanediol(6). Initial in vitro teats of the effects of both (R)- and (S)-2 on the growth of a 

breast cancer cell line (MCF-7) and a colon cancer cell line (T84) showed a potent inhibition of cell growth; the 

cytotoxicity of (S >2 against MCF-7 cells was higher than that of (R )-2. 
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